
6
Fine-tuning Your Sy

Contents Index
stems
User Guide 6-1

���������DSM provides you with two powerful tools that allow you to
fine-tune and manage your network of systems. The Programmable
Events Processor (PEP) allows you to centrally manage events so that
it reports only on issues you predetermine.

The Enterprise Management Database (EMD) is an application
manager in charge of all communication between the database and
other ���������DSM components.

This chapter describes how to use these two tools.

���������DSM

Dispatching and Managing New Events

���������DSM has a Programmable Events Processor (PEP) for
dispatching and managing new events. You can use PEP as a central
point of event control, so it only reports on issues you want to see. You
can also use PEP to communicate with your own external applications,
such as Remedy.

PEP is implemented in ���������DSM as a daemon. There must be at a
minimum of one instance of PEP per network, but no more than one
6-2

instance per host machine. Most installations of ���������DSM will use
a single PEP daemon, or a primary and secondary PEP daemon.

Applications can inform PEP of noteworthy events by using an
Remote Procedure Call (RPC)-based Application Programmers
Interface (API). PEP will then perform whatever action(s) you’ve
previously defined for that particular event. PEP can also log these
events in its common logging facility.

The diagram in Figure 6-1 shows how PEP interacts with the other
main components of the ���������DSM package.

Fine-tuning Your Systems

PEP

Status Map GUI

Status Map GUI
PEP

...Other GUIs...
User Guide 6-3

Figure 6-1 PEP interaction with ���������DSM components

Functionality

PEP has a central role determining how the parts of ���������DSM
work. It can do the following:

• Accept event notifications via an RPC-based API.

• Write events to the common log via the Enterprise
Management Database (EMD).

• Determine how to dispatch the event (using a rule-based policy
engine).

• Dispatch events.

• Manage multiple Status Map GUIs reflecting the event activity.

SysAdmin DSA Events DSA:

EMD Interface

Informix Database

“AgentMon”
“AgentENL”

:
“renld”

���������DSM

• Manage the actions between GUIs, for example,
acknowledging an event on one GUI will cause it to be
acknowledged on all other GUIs.

• Forward events to another PEP (see Figure 6-1), allowing
scalability for large networks.

• Help you query for an event’s relationship to pools.

Policy Engine
6-4

PEP uses a rule-based dispatch table as its policy engine. Events are
dispatched based on an ordered matching scheme. You can also add
rules to define when this matching stops.

Each incoming event is matched against all defined rules (unless a
stopmatch command is encountered). Events can be matched based on
the following fields:

• Actual event ID (test name)

• Host where the event was generated

• Severity level of the event

• Application class of the event

• Application type

• Time the event occurred

• The Description of the event

Actions

Based on the policy you define (or the defaults), PEP can take one or
more of the following actions:

• Send e-mail

• Send notification to the Status Map

• Start a process you defined and run it on any managed host

• Log the event

• Forward the event to another instance of PEP (via RPC)

• Query for the relationship to a pool

Fine-tuning Your Systems

Status Map GUI Dispatching

PEP maintains connections with all running GUIs to allow the
inter-operability between them. This includes:

• Maintaining a list of current on-line GUIs

• Dispatching Events to all GUIs

• Marshalling Events’ acknowledgments from the
acknowledging GUI to all other connected GUIs

Policy Definition
User Guide 6-5

The policy definition is a rules-based system contained in an ASCII
file, so rules can be defined and changed dynamically as the system
grows. Rules are scanned in the order they are defined.

Rules-Based Language

Using this rules-based method, new events can be generated and
complex relationships can be created between events. The policy
engine supports the following elements:

• Complex, nested if/then/else syntax

• Variables (local, global, static, and dynamic)

• Timers with one-second granularity

• Pattern matching on string fields

• Time of day, day of week, date matching

• Modifying the elements of the current event

• Querying for pool relationships

You can use timers to set up rules based on an occurrence of an event
multiple times within a given time period. Portions of an event can be
modified, as shown in the following example. This effectively creates a
new event from an existing one, which can then be further dispatched.

Common Logging

All data logs go directly into the EMD. All event logs go through PEP
for additional dispatching.

���������DSM

rules for various events

rule log all events
 event -> log
;
rule all clear # always send all clear events to gui
 if event.severity = allclear
 then
 event -> gui
 endif
;

6-6

rule severe events # tell map and send mail or page
 if event.severity >= severe
 then
 event -> gui # notify the GUI
 if timeofday >= 8am and timeofday <= 5pm
 then
 event -> mail “bob@dispatch”
 # send email to the dispatcher
 else
 event -> exec “localhost” “/etc/page” “456-1234”
 endif
 endif
;
rule rpc client bad calls # create new event
 variable bad_calls initializer 0 # a local variable
 if event.host = “taz” and event.name = “rpc.badcalls”
 then
 increment bad_calls
 if bad_calls > 10
 then
 event.severity = severe
 event.hostname = “PEP”
 event.explanation = “10+ rpcc client bad calls on taz!”
 event -> gui
 event -> log # original event was already logged
 set bad_calls 0
 stopmatch # don’t match against any more rules
 endif
 endif
;

Fine-tuning Your Systems

Manually Killing/Invoking PEP

Sometimes you may want to manually kill or invoke PEP, for example,
when you’re bringing down the system for maintenance or upgrading
to a new release of ���������DSM.

Note: You must shut down EMD and you should shut down PEP
before backing up any database tables and then manually
restart them afterward.

☞

User Guide 6-7

The rest of this section details how to do this for PEP.

Terminating PEP

You can bring down the pep daemon with the following CLI
command:

kill -2 <pid#>

This sends an interrupt to the daemon and allows it to shut down
gracefully.

Starting PEP

You can invoke the pep daemon with the following CLI command:

./pep &

This starts the daemon in the background. If you have changed the
pathname for the rules.txt file (from $ENLIGHTEN/contrib/

rules.txt), you need to use the following command instead:

./pep -f yourpathname /contrib/rules.txt &

where yourpathname shows the full pathname to the rules.txt file.

���������DSM

Program Layout

PEP programs must adhere to a certain layout. The general layout is:

Comments start with “#” and
Terminate at the end of the line
#
Global variable declarations
Timer declarations

Rule declaration # Comments can start any where
6-8

Local Variable Declarations
Program

;

Rule declaration
Local Variable Declarations
Program

;

More specifically:

• The program allows comments to begin anywhere on the line
and extend all the way to the end of the line.

• Any global data must be declared before any rules are defined.

• Timers are implicitly global. They must come after any global
variable declarations.

• Rules are terminated with a semicolon (;). You can use as many
rules as necessary.

Program Execution

The engine program is executed every time PEP receives an event.
External processes, such as SysAdmin agents or Events agents, can
send an event using timers. PEP can also do this (see “Timers” on
page 6-11 for more details).

There is a special event called a start-up event that gets generated
internally at start-up. You should use this event to initialize timers.

Fine-tuning Your Systems

Data Types

The PEP language supports several different data types:

• integer numbers

• floating point numbers

• strings

• date/time

• timers

• events
User Guide 6-9

• identifiers

• constants

Integer Numbers

The following are examples of valid integer declarations:

-1 32 42235523 09

The following are examples of invalid integer declarations:

+24 +2442533

Floating Point Numbers

The following are examples of valid floating point number
declarations:

4.2 0.332 -.442 -2.44 -0.243 89.0

The following are examples of invalid floating point number
declarations:

3.2e02 +5.2

���������DSM

Strings

Strings are anything in quotes (““) except the quote character itself. All
string data types in PEP support regular expression matching,
including wildcard matching. The following are examples of valid
string declarations:

“Hello There”
“He said *”
“123”
“[a-z].*”
6-10

“I can punctuate...,,,”

The following are examples of invalid string declarations:

“what “?”
“ No end in site
was”sup

Date/Time

PEP supports partial time and date declarations. You can use the
keyword timeofday to read the system’s local time. Add the
designators PM/AM to specify absolute time designation. This is what
the engine looks for to distinguish between relative and absolute time
references.

Dates are declared in U.S. notations and assume the local time of the
host system. The notation is as follows:

month day year OR
month year

It does not support the European or Asian date notation of:

day month year OR
year month day

Fine-tuning Your Systems

A few different styles of notations and separators are supported. The
following are examples of valid date/time declarations:

12/95 12-95 12/3/1990 12-3-90
timeofday
Dec 4, 1992
Wed 9:00 PM
3 am
12:24:31 AM
Tuesday
User Guide 6-11

The following are examples of invalid date/time declarations:

12:30
1995/12/3
1:1
15/7/96

Timers

Timers are special data types that are an extension of the date/time
data type. Timers support relative and absolute time specifications.
Relative time is either hr : min : sec or min : sec . The following are
examples of valid timer declarations:

0:30 1:00:00 1:00

Remember that timers support all date/time declarations as well.
Timers can also be manipulated programmatically. They have
two fields:

Field name Data type Description

state string Current state of the timer (Set,
Cleared, Expired). See “Constants”
on page 6-13.

time timer Absolute or relative time of timer.

���������DSM

Events

Anything that is sent to PEP is considered an event. PEP itself can
generate events internally, one on start-up and one for every timer
expiration. Events have components you can inspect or modify. These
fields are designated with the dot ‘. ’ operand. The fields are:

Field name Data type Description

severity constant Severity level of the event.
6-12

Identifiers

You can use identifiers to name variables, rules, and timers. They must
begin with a letter and can contain letters, numbers, or underscores
(‘_’). The following are examples of valid identifiers:

a1234 bbc ABC A_1234

The following are examples of invalid identifiers:

1A A-Z bor%d

As a general rule, you should use lowercase letters for identifiers, since
constants start with uppercase letters. This will help avoid confusion
between identifiers and constants.

name string Testname that generated the event.

hostname string Name of the host that caused the event.

description string Descriptive text about the event.

time date/time Time when the event was generated in
system local time.

application constant Application type that sent the event.

appclass constant Application class that sent the event.

Fine-tuning Your Systems

Constants

You can use constants to compare event subfields and timer states to
preset states. Constants are actually strings and integers that are
hardwired to a certain state. All constants begin with an uppercase
letter. The following is a list of constants and their appropriate uses:

Events have one of these five severity types:

Okay
Info
User Guide 6-13

Severe
Warning
Error

Events have one of these seven application types:

EventAckOne
EventAckAll
EventDeletePool
EventMoveIcon
EventChangeMap
EventInit
EventTimer

Events have one of these three application classes:

EventClass
AdminClass
CLIClass

Timers have one of these three states:

Set
Expired
Cleared

���������DSM

Program Syntax

The PEP language consists of:

• variables

• timer declarations

• rules declarations

• expressions

• implicit conversions
6-14

Variables

Variables can be either dynamic or static. All variables must be
explicitly assigned and are implicitly typed:

variable static x = 2

This variable declares a static variable x of an integer type and assigns
the value of 2 to it. The following are more examples of valid variable
definitions:

variable static y = 4.2 + 44.2
variable cc = “Hello World”
variable backup_time = 10:30 pm
variable now = timeofday

The variable’s domain is implicit where it is declared. Global variables
are always defined before any rule declarations and are accessible in
any rule. Local variables are always declared after the rule declaration
and only accessible to the rule that declared it. Variables that are
named the same as global ones will hide the globals and continue until
they go out of the local scope.

Fine-tuning Your Systems

Timer Declarations

You can use timers to set the time-in and time-out of events in PEP.
Time-outs generate events themselves. Timer states are implicitly set to
“CLEAR” and must be initialized explicitly using the start-up event:

timer backup = 4:30 am
timer april_fools = Apr 1
timer one_minute = 0:60
timer one_a_day = 24:00:00
User Guide 6-15

Rules Declarations

Rules are declared with the key word rule and followed by a name
using a valid identifier. Rules must have a body:

rule myrule
variable static count = 0
if (event.severity > 0)
then

increment count
endif

;

The rule myrule uses a local static variable to count the number of
events that have a positive severity.

Expressions

Expressions can be assignments, decisions, and send event statements.

Assignments

Assignments are performed by using the equal sign (=). The
right-hand side can be a complex expression. The left-hand side must
be a variable or part of the event structure.

x = y + 432
event.hostname = “New hostname”

The following arithmetic operations are supported: +, -, /, *, %,
increment, decrement.

���������DSM

For example:

z = 42.3 - 24.0 * 2.0
x = z / 42.1
b = 5 + 4
increment b
decrement c

Decisions

You can make decisions by using an “if/then/else/endif” expression
6-16

in conjunction with logical expressions (==, !=, <, >, <=, >=, and, or).
An if expression must have a then and a terminating endif statements;
the else branch is optional.

variable count = 0
variable myval = 1

if (event.hostname == “a*”)
then

increment count
if (count >= 2 and my_val < 3)
then

increment myval
else

decrement myval
endif

endif

Use the stopmatch command to stop a rule’s execution. When PEP
encounters a stopmatch command, it will “break out” of the program
and discontinue execution until the next event occurs.

Fine-tuning Your Systems

Send Events

Events can be sent to five separate targets (log, gui, mail, exec, pep) via
the “->” notation.

event -> log # event is forwarded to logger
if (event.severity > 0)
then

event -> gui # event is forwarded to all guis
else

event -> mail “user@company.com”
User Guide 6-17

endif
event -> exec “aShellCommand arg1”

forward the event to the secondary PEP at host
masterhost
event -> pep at “masterhost”

Whole events can be sent to different targets this way. The log and gui
targets don’t require any additional arguments. The mail target must
be a user specified in quotes (for example, “jk“). The pep target must
be followed by the key phrase ‘at hostname’.

The exec target must contain the command to execute and any
arguments in quotes (for example, “aShellCommand arg1“). The
values of the event are passed to the shell as environment variables.
The Events fields are listed in the table below.

Event field Corresponding environment variable

name $ENL_TESTNAME

hostname $ENL_HOSTNAME

severity $ENL_SEVRITY

description $ENL_DESCRIPTION

time $ENL_EVENTTIME

���������DSM

Event fields and timer fields can be modified individually, as shown in
the examples below:

timer a = 0:00:30 # 30 second timer

rule startup_rule
if (event.name == “EventInit”)
then

a.state = “Set” #set the timer on startup
endif

;

6-18

Query Events

PEP supports simple queries. Use the following syntax:

host in pool abc_pool

This command searches the pool abc_pool recursively to see if the
host is in that pool or its subpools.

This is useful when you set up your own pools and subpools. You can
write a rule to check if an event came from a certain pool of hosts. For
example, the following code fragment will check if an event came from
the pool “important_pool”:

if (event.hostname in pool “important_pool”)
then

event -> mail “user”
endif

Implicit Conversions

PEP supports manipulating different data types by using implicit data
type conversion. Unlike C, which converts to the “highest” data type,
PEP converts based on left-to-right evaluations of expressions.

Fine-tuning Your Systems

Simple Comparisons

A simple example is:

variable a = 2
variable c = 4.2
variable i = 0

if (a + c > 6)
User Guide 6-19

then
increment i

endif

if (c + a > 6)
then

increment i
endif

In the first if expression, a + c is evaluated as an integer added to a
float. Since the integer is the first expression, c is also converted to an
integer. The temporary result is an integer with a value of 6, thus
causing the if expression to evaluate to false.

In the second if expression, c + a is evaluated as a float added to an
integer. Since the float is the first expression, a is converted to a float.
The temporary result is a float with a value of 6.2. This temporary float
also causes the constant 6 in the if expression to promote to a float of
6.0, thus causing the if expression to evaluate to true.

Date/Time Comparisons

Absolute date/time comparisons compare only the common elements
defined. For example, variables a, b, c , and d are set as follows:

variable a = 12/19/95
variable b = 2 pm

variable c = Tuesday
variable d = timeofday

���������DSM

Assume the current time is “Tuesday Dec 19, 1995 2:25pm”.
Comparing variable a, b, or c to variable d would evaluate to true
because each comparison only compares the common date/time
components. However, comparing a to b, b to c , or a to c would result
in a false comparison since none share common components. If we
added an additional variable e,

variable e = 2:25 pm

comparing e to b would result in a true expression since the only
common components are the hour and am/pm designator.
6-20

Unsupported Conversions

The “string to time” conversion is not supported at this time.

Program Start-up

When the program is started, a “startup” event is passed through the
system. The event’s name is set to the constant EventInit . This event
should be used to explicitly initialize data such as timer states.

PEP Engine Program Example

The following is an example of a PEP engine program to test the event
e-mail process:

Fine-tuning Your Systems

test program

variable appServer = “Hostname.*”
variable collisions = “Testname.*”

rule alwayslog
event -> log

;

rule testit
if (event.severity == Okay)
User Guide 6-21

then
event -> gui

endif
;
rule severe_check

if (event.severity == Severe)
then

event -> gui
if (timeofday >= 10:00 am and timeofday <= 10:23 am)
then

event -> mail “jk”
else

event -> exec “ls -lt > sh.$$”
endif

endif

rule ss
variable static collision_count = 0

if (event.hostname == appServer and event.name == collisions)
then

increment collision_count
if (collision_count > 10)
then

event.severity = severe
event.hostname = “PEP”
event.description = “More then 10 collisions”
event -> gui
event -> mail “jk”
collision_count = 0
stopmatch

endif
endif

;

���������DSM

Enterprise Management Database

The Enterprise Management Database (EMD) is in charge of all
communication between the database and other ���������DSM
components. It consists of three components:

• Informix SE Database Engine with an ANSI-compliant
database.

• ODBC drivers (currently supporting only Informix)

• A daemon emdd that handles all requests from other
6-22

���������DSM components.

As an RPC-based server, the emdd communicates with the following
���������DSM components: Events agent, SysAdmin agent, Status
Map, PEP, and the user interface.

The communication layer between emdd and the database is ODBC
compliant. Our ODBC drivers are supplied by Visigenic Software Inc.
The drivers are Core and Level 1 API conformant and Minimum and
Core SQL conformant.

The emdd daemon also checks daily to see if any data in the database
needs to be expired. See Chapter 3, “Configure,” in the ���������DSM

Reference Manual for more details.

Relational Database

���������DSM includes a relational database as part of EMD. The
following data is stored in the database:

• pool configurations

• session preferences

• host overrides

• user authorizations

• add user templates

• archive device configurations

• Events log data

• Events alarm data

• software and hardware inventory lists generated by Events

Fine-tuning Your Systems

• acknowledgment of events from the Status Map

• backup catalogs

• scheduling of backups

• host notes

The following data is not stored in a database:

• Events host-specific testtab files

• Events AgentENL.config file data

• snapshots of disks/file systems
User Guide 6-23

Directory Structure

The EMD directory structure is:
• install-path/bin

• install-path/dbtables

• install-path/odbc

• install-path/informix

• install-path/msg

• install-path/log

where:

bin contains the emdd daemon and scripts such as
start_enl daemons

dbtables contains the database tables, the database's
transaction log, and a script to create the database
tables

odbc contains the ODBC drivers and other related
components

informix contains the Informix SE products

msg contains any message catalog files

log contains the emdd’s logfile emdd.log

���������DSM

Database Access

The database and its tables are owned by the user dbenl. This is a new
user that is created at installation time. User dbenl's home directory
will contain an odbc initialization file .odbc.ini, and its .cshrc or
.profile file will contain the environment variables necessary to run
Informix and the ODBC driver.

By default, only user dbenl has access to the database. dbenl must start
the daemon emdd or the daemon will not be able to access the
database. The database administrator at your installation site may
6-24

change the database privileges.

Warning! Do not modify or rename the .odbc.ini initialization file.
Doing so will make all subsequent EMD usage and
connections fail.

Manually Killing/Invoking EMD

Sometimes you may want to manually kill or invoke EMD; for
example, when you’re bringing down the system for maintenance or
upgrading to a new release of ���������DSM.

Note: You must terminate EMD before backing up any database
tables and then manually re-invoke them afterward.

The rest of this section tells how to do this for EMD.

☞

Fine-tuning Your Systems

Terminating EMD

You can bring down the emdd daemon with the following command:

stop_enl_daemons

This sends an interrupt to all ���������DSM daemons and allows the
program to shut down gracefully. The daemon waits for any child
processes to exit before shutting down. This may take up to 10
seconds.
User Guide 6-25

Starting EMD

You can invoke the emdd daemon with the following CLI command:

start_enl_daemons

This starts the daemon in the background and sets the log level to 0.
The log file is generated, but only error messages are logged (if any
occur).

	Fine-tuning Your Systems
	Dispatching and Managing New Events
	Functionality
	Policy Engine
	Policy Definition
	Manually Killing/Invoking PEP
	Program Layout
	Program Execution
	Data Types
	Program Syntax
	Expressions
	Implicit Conversions
	Program Start-up
	PEP Engine Program Example

	Enterprise Management Database
	Relational Database
	Directory Structure
	Database Access
	Manually Killing/Invoking EMD
	Terminating EMD
	Starting EMD

